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Abstract

In this paper the existence as well as the existence of the extremal solutions
for a first order perturbed functional differential inclusions is proved under the
mixed generalized Lipschitzity and Carathéodory’s conditions.
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1 Statement of Problem

Let IR denote the real line and and let IR™ be an n-dimensional Euclidean space. We
define a norm |- | in IR™ by
lz| = |z1] + - - - + |za]

for z = (z1,...,2,) € R". Let Iy = [-r,0] and I = [0, a] be two closed and bounded
intervals in IR. Let C = C{I,IR") denote the Banach space of all continuous IR"-
valued functions on Iy with the usual supremum norm || - ||¢ given by

I¢llc = sup{|$(d)] : —r < & < 0}.

For any continuous function = defined on the interval where J = [~r,a] = I; U ] and
any t € I we denote by z; the element of C defined by

(0) =z(t+6), -r<§<0, 0<t<a

Given a function ¢ € C, consider the perturbed functional differential inclusion (in
short FDI)

:E’(t) = Iﬁj(t; -'Et) .}-G(t,xt) ae. tel, } (1.1)

Ty =@,
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where F,G : I x C — P¢(IR") and P;(IR™) denotes the class of all nonempty subsets
of IR™.

By the solution of FDE (1.1) we mean a function z € AC(J,IR") that satisfies the
equations in (1.1), where AC(J,IR") is the space of all absolutely continuous functions
on J.

The FDE (1.1) is new and the special cases of it have been discussed in the literature
since long time. For example, if F(t;z:) = {f(t,z:)} and G(¢,z:) = {g(¢, z;)}, then we
obtain a functional differential equation

x'gzzgff,Iz)+9(t:$t) a.e. tefa} (1.2)

where f,g : I x C — IR". The more general form of functional differential equation

than (1.2) has been discussed in Dhage [7] for existence results. Again when G =0 on

I x C, the FDI (1.1) reduces to

/

z'(t) € F(t,z;) ae tel, } (1.3)
Iy = gba

where F': I x C' — Ps(IR").

The FDI (1.3) has already been discussed in the literature via different methods.
The multi-valued version of a fixed point theorem of Krasnoselskii is generally used
for proving the existence of solution under the mixed Lipshcitzity and Carathéodory’s
conditions. See Petrusel [15] and the references therein. In this article we shall prove
an existence theorem for FDI (1.1) using a new nonlinear alternative of Schaefer type
recently developed in Dhage [6].

2 Auxiliary results

Throughout this paper X will be a Banach space and let P(X) denote the class of all

subsets of X. Let P§(X), Poga(X) and P, ,(X) denote respectively the classes of all

nonempty, bounded-closed and compact-convex subsets of X. Forz € X and Y, Z &

Poaa(X) we denote by D(z,¥) = inf{[lz — | | y € Y}, and p(¥, 2) = sup D(a. 2).
ag

Define a function H : Pgu(X) X Pyya(X) — IR™ by
H(A, B) = max{p(A, B), p(B, A)}.

The function H is called a Hausdorff metric on X. Note that ||Y|| = H(Y, {0}).

A correspondence T : X — P;(X) is called a multi-valued mapping on X. A
point zo € X is called a fized point of the multi-valued operator T : X — Pp(X) if
Zo € T'(xq). The fixed points set of 7" will be denoted by Fix(T).
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Definition 2.1 Let T : X — Py u(X) be a multi-valued operator. Then T is called a
multi-valued contraction if there exists a constant k € (0,1) such that for each z,y € X
we have

H(T(z),T(y)) < kllz - yl-

The constant k is called a contraction constant of T.

A multi-valued mapping T : X — P;(X) is called lower semi-continuous (shortly
ls.c.) (resp. upper semi-continuous (shortly u.s.c.)) if B is any open subset of X
then {x € X | Gz N B # 0}(resp.{z € X | Gz C B}) is an open subset of X. The
multi-valued operator T is called compact if T(X) is a compact subset of X. Again T
is called totally bounded if for any bounded subset S of X, T'(S) is a totally bounded
subset of X. A multi-valued operator T : X — P¢(X) is called completely continuous
if it is upper semi-continuous and totally bounded on X, for each bounded A € P:(X).
Every compact multi-valued operator is totally bounded but the converse may not be
true. However the two notions are equivalent on a bounded subset of X.

We apply the following form of the fixed point theorem of Dhage [6] in the sequel.

Theorem 2.1 Let X be a Banach space, A: X — Pyeppa(X) and B : X — Py, o (X)
two multi-valued operators satisfying

(a) A is contraction with a contraction constant k, and
(b) B is u.s.c. and completely continuous.
Then either
(i) the operator inclusion Az € Az + Bz has a solution for A=1, or

(ii) the set £ ={u € X | \u € Au+ Bu, A > 1} is unbounded.
We also need the following definitions in the sequel.

Definition 2.2 A multi-valued map map F : J — Py o,(IR") is said to be measurable
if for every y € IR", the function t — d(y,F(t)) = inf{lly — z| : = € F(t)} is
measurable.

Definition 2.3 A multi-valued map F : I x C — Py(IR") is said to be L'-Carathé-
odory if

(i) t — F(t,x) is measurable for each z € C,

(1) = — F(t,z) is upper semi-continuous for almost allt € I, and
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(1) for each real number p > 0, there ezists a function h, € L*(I,IR*) such that
| F'(t, w)|| = sup{|v| : v € F(t,u)} < h,(t), ae teJ
for all u € C with ||ullc < p.

Denote
Sp(z) ={ve L'(I,IR") : u(t) € F(t,z;) a.e. t I}

Then we have the following lemmas due to Lasota and Opial [13].

Lemma 2.1 If dim(X) < oo and F : J x X — P¢(X) is L*-Carathéodory, then
SE(z) # 0 for each z € X.

Lemma 2.2 Let X be a Banach space, F' an L*-Carathéodory multi-valued map with
Sp # 0 and K : LYJ,X) — C(J,X) be a linear continuous mapping. Then the
operator

KoSt:C(J,X) — Pope(C(J, X))
is a closed graph operator in C(J,X) x C(J,X).

3 Existence Result

We consider the following set of assumptions in the sequel.

(H:1) The multi-function t — F(¢,z) is measurable and integrably bounded for each
zeC.

(H2) There exists a function k € L*(I, IR") such that the multi-function F : I x C' —
Poewpa(C(I,IR™)) satisfies

H(F(t,z),F(t,y)) <k@t)|z —yllc ae tel,
for all z,y € C and ||k < 1.
(H3) The multi G(t, z) has compact and convex values for each (¢, z)eIxC.
(Hs) G is L*-Carathéodory.

(Hs) There exists a function ¢ € L*(I,IR) with ¢(t) > 0 for a.e. ¢ € I and a nonde-
creasing function ¥ : IR* — (0, o) such that

G2l < q(t)elllzlc) ae. tel,

for all z € C.
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We use the following lemma in the sequel.
Lemma 3.1 Suppose that the hypothesis (Hz) holds. Then for any a € F(t,z),
lal < k@)lzllc + | F(,0)I], ¢t €1,
forallz e C.
Proof: Let z € C be arbitrary. Then

(¢, z)]] t, ), 0)

H(F(t,z), F(t,0)) + H(F(t,0),0)
H(F(t,z), F(t,0)) + | F(t,0)],

I
& 5
oo

IA A

for all ¢t € I. Hence for any a € F(t, z),

lal < [[F@E2)|
< H(F(t,2), F(t,0) + | F(z. 0)]
< k@)llzlle + |1F 2, 0)],

for all ¢ € I. The proof of the lemma is complete. ]

Theorem 3.1 Assume that (H;)-(Hs) hold. Suppose that

*  ds
| s > Il (51)

where ¢y = / | F(s,0)||ds and v(t) = max{k(t),q(t)} fort € I. Then the FDI (1.1)
has a solutim?ﬁ on J.

Proof : The problem of existence of a solution of FDI (1.1) reduces to finding the
solution of the integral inclusion

t

z(t) € ¢(0) + /Otp(s,ﬂ:s) ds -i—/o G(s,zs)ds, tel (3.2)
z(t) = 8(t), tel.

We study the integral inclusion (3.2) in the space X = C(J,IR™) of all continuous
IR"-valued functions on J with a supremum norm || - ||. Define two multi-valued maps
A,B: X — Pi(X) by

o { {weCU, R u(t) = [{v(s)ds, ve Shm)}, i ter, -

0; if t€
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and

{u € C(I,LIR™) : u(t) = 6(0) + [ v(s)ds, ve Sé;(:c)}, if tel,
o(t) if tel.

Bii= (3.4)

We shall show that the operators A and B satisfy all the conditions of Theorem 2.1
on J.

Step I. First we show that Az is closed conver and bounded subset of X for each
z € X. This follows easily if we show that the values of Niemytsky operator are
closed in L'(I,IR™). Let {w,} be a sequence in L'(I,IR"™) converging to a point w.
Then w, — w in measure and so, there exists a subset S of positive integers with w,,
converging a.e. to w as n — oo through S. Now since (H;) holds, the values of St are
closed in L'(I,IR"). Thus for each z € X we have that Az is non-empty and closed
subset of X.

We prove that Az is a convex subset of X for each z € X. Let uy, us € Az. Then
there exists v; and v, in Si(z) such that

t
(%) :f vl s, Fed2
0
Since F(t,z) has convex values, one has for 0 < p < 1,
[uon + (1 — p)v)(t) € Sp(z)(), Ve J.

As a result we have
o+ (1= p®) = [ po(s) + (1= pealt)} s

Therefore [pu; + (1 — p)us] € Az and consequently Az has convex values in X. From
hypothesis (H;) it follows that Az is a bounded subset of X for each z € X. Thus we
have A: X — Pd,cv!bd(X)-

Step II. Next we show that B has compact values on X. Now the operator B
is equivalent to the composition £ o S} of two operators on L!(I,IR™), where L :

LMI,IR™) — P(C(I,IR™)) is defined by

Lu(t) = (0) + j£ " 4] ds.

To show B has compact values, it is enough to show that the Niemytskii operator has
compact values on L'(I,IR"). Let z € X be arbitrary and let {v,} be any sequence
in S}(z). Then v,(t) € G(t,z;) a.e. for t € I. Since G(¢,z;) is compact, there exists
a subset S of positive integers such that v,(t) — v(f) as n — co through S and
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v(t) € G(t,z;) a.e. fort € I. As a result we have that v, — v as n — oo through S.
Hence Si(z) is compact and consequently by superposition principle Bz is compact for
each z € X. See Appell 2] and the references therein. Further as in the case of operator
A it can be shown that B has convex values on X. Thus we have B : X — P, ,,(X).

Step III. We show that A is a multi-valued contraction on X. Let z,y € X and
u; € Az. Then u; € C(I,IR") and u(t) = fot v1(s) ds for some v; € Sk(z). Since
H(F(t,z:), F(t,y:) < k(t)||z: — y:l|lc, one obtains that there exists w € F(¢,y;) such
that ||vi(t) — w|| < k(¢)||z: — vtllc. Thus the multi-valued operator U defined by
U(t) = St(y)(t) N K (), where

K(t) = {w € IR®| |l1(t) — wl| < k(t)l|ze — ellc}

has nonempty values and is measurable. Let v, be a measurable selection for U (which
exists by Kuratowski-Ryll-Nardzewski’s selection theorem. See [3]). Then vy € F(¢, ;)
and [Jos(t) - va(8)| < b(2)]z — wllo ae. on I.

2
Define uy(t) = / vo(s) ds. It follows that u; € Ay and
0
t t
f ’U]_(S) ds —/ 'UQ(S) ds
0 0
t
< [ nl) - ws)la
0
t

AMWM—%%ﬁ
< Jklzllz -l

[ (2) —u2(2)]| <

IA

Taking the supremum over ¢, we obtain
lur = wal| < [|E[[ 22 ]|z — yll.

From this and the analogous inequality obtained by interchanging the roles of z and y
we get that
H(A(z), A)) < llklleallz — vl
for all z,y € X. This shows that A is a multi-valued contraction, since ||k||z: < 1.
Step IV. Now we show that the multi-valued operator B is completely continuous on
X. First we show that B maps bounded sets into bounded sets in X. To see this, let Q be

a bounded set in X. Then there exists a real number 7 > 0 such that ||z|| < r,Vz € Q.
Now for each u € Bz, there exists a v € Sg(z) such that
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Then for each t € I,

rWNSIMW+£W@Ms

IA

t
MM+/m@$
0

< l8llc + Il

This further implies that
lull < llglle + 1Az

for all w € Bz € | B(Q). Hence |J B(Q) is bounded.

Next we show that B maps bounded sets into equicontinuous sets. Let Q be, as
above, a bounded set and u € Bz for some z € Q. Then there exists v € Si(z) such
that

u(t) = ¢(0) + /Ot*u(s) ds.

Then for any ¢,t, € I with £; < ¢, we have

/Dtl v(s)ds — /:2 v(s)ds
= [ btetas

t2
< f h(s)ds.
t1

If t1,ty € I then |u(t;) — u(tz)| = [#(t1) — ¢(t2)|- For the case where t; < 0 < ¢, we
have that

u(ty) —u(t2)] <

lu(ty) —u(t)| < }@'5@‘1) — ¢(0) — /{; 2 v(s) ds
s|am—MW+£1wm@
< Jé(t) — 6(0)] + [o * lddn,

Hence, in all cases, we have
[u(t1) — u(tz)| — 0 as t; — .

As a result | J B(Q) is an equicontinuous set in X. Now an application of Arzeld-Ascoli
theorem yields that the multi B is totally bounded on X.

Step V. Next we prove that B has a closed graph. Let {z,} C X be a sequence
such that z, — z, and let {y,} be a sequence defined by y,, € Bz, for each n € N such
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that ¥, — y.. We will show that v, € Bz,. Since y, € Bz,, there exists a v, € S&(xs)
such that

yn(t) = ¢(0) + /0‘3 vn(8) ds.

Consider the linear and continuous operator K : L*(X) — C(X) defined by

Ko(t) = / vn(5) ds.
0
Now

< |lgn—wl| = 0 as n — oo.

[9n () — 8(0) — (v« (2) — #(0))]

From Lemma 2.2 it follows that (K o S%) is a closed graph operator and from the
definition of & one has

Yn(t) — 6(0) € (Ko S}‘(In))
As z, — z, and y, — Y., there is a v € S}(z.) such that

0(t) = $(0) + [ v.(s) ds.

Hence the multi B is an upper semi-continuous operator on X.

Step VI. Finally we show that the set
E={u€ X: € Au+ Bu for some A > 1}

is bounded.
Let u € £ be any element. Then there exists v; € Si(u) and vy € Si(u) such that

_ -1y o[ -1 '
u(t) = A7 ¢(0) + A /0U1(5)d5+)\ /ng(s)ds.
Then
@) < $(0)+ / jus(s)] ds + / joa(s) | ds
< #0)+ / (k(s) lusllc + | F(s, 0] ds + / a(s)o([lusllc) ds.

Put w(t) = max{|u(s)| : —r < s < t}, ¢ € I. Then |Jus]lc < w(t) for all t € I and
there is a point t* € [—r,¢] such that w(t) = u(¢*). Hence we have

w(t) = |u(t)]
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=

= /Ot k(s)”Us”c ds +-/0 ”F(SU)“ ds -i—/o Q(S)w(”us”C) ds
< ¢+ /Ot k(s)w(s)ds + /Ot g(s)(w(s)) ds
< o+ [ ) le) + o) ds

where (t) = max{k(z),q(t)} for t € I.
Let ‘

mt) = ot [ A(s)wls) + wlw()ds, tel
Then we have w(t) < m(t) for alft € I. Differentiating w.r.t. to t, we obtain
m(t) = 2(8)(w(t) + Y(w(D), ae. t€ I, m(0) = co
This further implies that
m(t) < ~(E)(m(t) + $(m{t)), ae. t € I, m(0) = co

that is,

- Tlg()m(f)) < 1(t) ae t € J, m(0) = .

Interesting from 0 to t we get

t m/(s) t ’
fo ) + W) Sfo s)ds.

By the change of variable.

it ds = ds
f < Iyl < / i
w S+U(s) o STU(s)

Hence there exists a constant M such that

w(t) <m(t) < M for all tel.
Now from the definition of w it follows that

lul = B lu(t)| = w(a) < m(a) < M,

for all u € £. This shows that the set £ is bounded in X. As a result the conclusion (ii)
of Theorem 2.1 does not hold. Hence the conclusion (i) holds and consequently (3.2)
or equivalently FDI (1.1) has a solution z on J. This completes the proof. O
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4 Existence of Extremal Solutions

In this section we shall prove the existence of maximal and minimal solutions of the
FDI (1.1) under suitable monotonicity conditions on the multi-functions involved in
it. We define the usual co-ordinate-wise order relation “ < ” in IR" as follows. Let
= (T1,...,2,) € IR" and y = (y1,...,¥,) € IR® be any two elements. Then by ©
Tz <y” wemean z; < y; for all Vi, i = 1,---,n. We equip the space C(J,IR") with
the order relation < defined by the cone K in C(J,IR"), that is,

K={zcC(J,R") |z(t) >0, Vte J}. (4.1)

It is known that the cone K is normal in C(J,IR"). The details of cones and their
properties may be found in Heikkila and Lakshmikantham [11]. Let a,b € C(J,IR™) be
such that a < b. Then by an order interval [a, b] we mean a set of points in C(J, IR")
given by

[a,b) ={z € C(J,IR™) |a < z < b}. (4.2)

Let D,Q € Py(C(J,IR™)). Then by D < Q wemean a < bforalla € D and b € Q.
Thus a < D implies that a < b for all b € @ in particular, if D < D, then it follows
that D is a singleton set.

Definition 4.1 Let X be an ordered Banach space. A mapping T : X — Py(X) is
~ called isotone increasing if ¢,y € X with z < y, then we have that Tz < Ty.

We use the following fixed point theorem in the proof of main existence result of this
section.

Theorem 4.1 (Dhage [7]). Let [a,b] be an order interval in a Banach space and let
A, B :a,b] — Py(X) be two multi-valued operators satisfying

(a) A is multi-valued contraction,

(b) B 1is completely continuous,

(c) A and B are isotone increasing, and
(d) Az + Bz C[a,b], ¥ € [a,b].

Further if the cone K in X is normal, then the operator inclusion z € Az + Bz has
a least fized point z. and a greatest fized point z* in [a,b]. Moreover z, = limz, and
n

z* = limy,, where {z,} and {y,} are the sequences in [a,b] defined by

Tni1 € AzZn + Bzp, zo0 =0 and Yny1 € AYn + Byn, yo=0b.

We need the following definitions in the sequel.
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Definition 4.2 A solution a € C(J,IR") is called a lower solution of the FDI (1.1) if
a'(t) < vy (t)+va(t) for allt € I and a(t) < ¢(t) for allt € Iy, where vi,v2 € L' (I,IR™)
such that v1(t) € F(t,a:) and vs(t) € G(t,a;) almost everywhere t € I. Similarly an
upper solution b of the FDI (1.1) is defined.

Definition 4.3 A solution zps of the FDI (1.1) is said to be mazimal if z is any other
solution of FDI (1.1) on J, then we have z(t) < zp(t) for all t € J. Similarly a
minimal solution of the FDI (1.1) is defined.

We consider the following assumptions in the sequel.

(Hs) The multi-functions F(t, z) and G(t, z) are nondecreasing in z almost everywhere
fort e I.

(H7) The FDI (1.1) has a lower solution a and an upper solution b with a < b.

Theorem 4.2 Assume that the hypotheses (Hi)-(Hz) hold. Then the FDI (1.1) has
minimal and mazimal solutions on J.

Proof : Let X = C(J,IR™) and consider the order interval [a, b] in X which is well
defined in view of hypothesis (H7). Define two operators A, B : [a, b] — P (X) by (3.3)
and (3.4) respectively. It can be shown, as in the proof of Theorem 3.1, that A and
B define the multi-valued operators A : [a,b] — Pu5a(X) and B : [a,b] — Pep ey (X).
It is also similarly shown that A and B are respectively multi-valued contraction and
completely continuous on [a, b]. We shall show that A and B are isotone increasing on
la,b]. Let z € [a,b] be such that z < y,z # y. Then by (Hs), we have

Az(t) = {u(t) Lu(t) = /O " o(s)ds, ve s}m(x)}

< {u(t) cu(t) = /;’U(S) ds, v € S}v(y)}
= Ay(t),

for all £ € I and Az(t) = 0 = Ay(¢) for all ¢t € ;. Hence Az < Ay. Similarly by (Hs),
we have

Bz(t) = {u(t): u(t) = ¢(0) —I—/O v(s)ds, v e Sé.(x)}

u(t) : u(t) = ¢(0) + /Gtv(s) ds, v € Scl;(y)}

for all t € I and Bz(t) = ¢(t) = By(t) for all t € Iy. Hence Bz < By. Thus A and B
are isotone increasing on [a, b]. Finally let z € [a, b] be any element. Then by (H7),

a<Aa+Ba< Ar+ Bx < Ab+ Bb < b,
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which shows that Az + Bz € [a,b] for all z € [a,8]. Thus the multi-valued operator A
and B satisfy all the conditions of Theorem 4.1 to yield that the operator inclusion and
consequently the FDI (1.1) has maximal and minimal solutions on J. This completes
the proof. O
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